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Mindlin plate theory predicts three frequency spectra or, equivalently, three branches to
a phase velocity dispersion diagram, the lowest of which—the w1 mode—provides rotatory
inertia and shear deformation corrections to classical thin plate theory. Employing
consistent truncation procedures to both the Mindlin and the exact Rayleigh–Lamb
frequency equations, valid for long wavelength and low phase velocity, one finds that w1

mode agreement is achieved when the shear coefficient takes the value k=5/(6− n); the
Mindlin prediction is then less than −0·5% in error when the wavelength is equal to the
plate thickness, and less than +1% in error as wavelength approaches zero. The previously
dismissed Mindlin H mode is seen to be in exact frequency (or phase velocity) agreement
with the second slowest SH wave in the infinite plate, as long as the shear coefficient for
this mode takes the value k= p2/12. However the w2 mode, as with the second frequency
spectrum of Timoshenko beams, should be regarded as the inevitable, but meaningless,
consequence of an otherwise remarkable approximate engineering theory.
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1. INTRODUCTION

The purpose of this paper is to address two issues concerning Mindlin Plate Theory
(MPT) [1, 2], neither of which is new to the literature. These are (a) what is the ‘‘best’’
shear coefficient, and (b) what is the validity of the so-called w2 and H modes, these being
the second and third frequency spectra predicted by MPT. The approach adopted in the
paper follows closely that taken by the present author in addressing the same two issues
in relation to Timoshenko Beam Theory (TBT). Thus the ‘‘best’’ shear coefficient is here
defined as that which will provide agreement of phase velocity (or, equivalently, natural
frequency for a standing wave) with the appropriate exact (according to the spirit of the
linear theory of elasticity) theory for the lowest flexural mode of vibration, when both
theories are approximated by a consistent truncation procedure designed to include all
second order effects*. (It should be noted, however, that this definition does not necessarily
ensure ‘‘best’’ agreement between other aspects of the vibration; for example, maximum
stress.) In the case of a Timoshenko beam this procedure, see reference [3], provided the
shear coefficients

k=6(1+ n)2/(7+12n+4n2) and k=5(1+ n)/(6+5n) (1a, b)

for the beam of circular and thin rectangular (plane stress) cross-sections, respectively; the
exact theories employed were due to Pochhammer and Chree (see, for example, reference
[4]), for the circular cross-section, and a plane stress version of the (plane strain)

* These truncation procedures were first employed by Timoshenko (see, for example, reference [22]), but the
final step, that of matching the two second order approximations, was not taken.
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Rayleigh–Lamb theory for the plate, due to Cowper [5]. Experimental support for these
as the ‘‘best’’ coefficients, in terms of frequency, has been provided by Kaneko [6]. After
having established the ‘‘best’’ coefficients for the two cases in which exact theories were
available, a procedure was then required which would predict similar ‘‘best’’ coefficients
for beams of cross-section other than circular and thin rectangular; this was done in
reference [7], where a second order beam theory was produced in which the shear stress
distribution during flexural vibration was approximated not by that of Saint-Venant
flexure, that is a beam subjected to a constant shearing force, as had been done by Cowper
[8], but rather it was assumed in reference [7] that the distribution during flexural vibration
would be better approximated by constant body force loading, as might be applied by
gravity, which leads to a linear variation (in the axial direction) of shearing force; this
procedure led to shear coefficients in agreement with those in equations (1), and provided
a formula involving the Saint-Venant flexure function suitable for other cross-sections. Of
course, for MPT, there is no requirement for this second phase of the investigation, as all
plates of uniform thickness have effectively the same cross-sectional shape, and the ‘‘best’’
shear coefficient should pertain to all plates.

In the case of plate flexural vibration, the exact benchmark with which MPT is here
matched is the well known Rayleigh–Lamb theory [9, 10], and by using this truncation
procedure, it is found that the ‘‘best’’ shear coefficient for the w1 mode is

k=5/(6− n). (2)

With the benefit of hindsight, this value is not surprising, as it is exactly what one finds
if Poisson ratio n in the plane stress thin rectangular beam coefficient of TBT, equation
(1b), is replaced by n/(1− n), as would be required for a plane strain plate coefficient.
Moreover, it is also the value arrived at by Hutchinson [11] who performed a similar
analysis for a plate of circular planform, when the ‘‘exact’’ benchmark theory [12] was an
infinite series solution in which the governing differential equations are satisfied identically,
but the boundary conditions are approximated.

Comparisons are made between MPT phase velocity predictions for the lowest flexural
(w1) mode by using both this ‘‘best’’ coefficient and a range of coefficients employed by
previous researchers, and with the exact Rayleigh–Lamb elastodynamic predictions; it is
found that maximum error is approximately −0·5% when wavelength is equal to the plate
thickness, which is a worthwhile improvement over the 3% error when using the popular
value k= p2/12.

The second question is the validity of the higher spectra; for TBT, which predicts two
frequency spectra (or two branches on a phase velocity/wavelength dispersion diagram),
it was concluded in reference [13] that the second, higher, spectrum was ‘‘. . . an
inevitable but meaningless consequence of the structure of an otherwise excellent
approximate theory’’. The basis for that conclusion was a comparison between phase
velocity predictions of TBT and the exact Pochhammer–Chree (PC) theory for an infinite
beam of circular cross-section; for the first spectrum, the differences were not discernible
on the dispersion diagram, and the maximum discrepancy was less than one-tenth of one
percent over the wavelength range considered. However, for the second TBT spectrum,
agreement could not be found over the same wavelength range; at long wavelength, one
could enforce agreement with the second PC flexural mode with a suitable shear coefficient
(k=0·847), but at short wavelength best agreement was afforded with the second PC
longitudinal mode. Over the mid-range of wavelengths, one could not find any comparable
exact prediction from PC theory.

The validity of the higher spectra of MPT, the w2 and H modes (or thickness-shear and
thickness-twist or breathing modes, respectively), has been called into question by
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Levinson [14], as part of a study of a restricted exact elastodynamic plate solution based
on a certain set of kinematic assumptions; whereas Levinson found good agreement
between MPT and his exact theory for flexural frequencies—he concluded that ‘‘. . . the
numerical predictions of MPT for the breathing frequencies are not particularly good
approximations in general’’. More specifically, for the examples considered, there was
reasonable agreement at the shorter wavelengths, but for the longer wavelengths there was
an order of magnitude difference. Levinson dismissed the validity of the Mindlin H mode
by referring to sketches of the mode in Mindlin’s second paper on the subject, reference
[2], in which plate thickness variation during oscillation contradicted the fundamental
kinematic assumptions of MPT, and he expressed surprise that this had not been noted
previously. (Of course, any inconsistency within Mindlin’s papers is irrelevant: the acid test
is whether there is agreement between the prediction and exact theory.) Levinson was less
definite on the question of the w2 mode of MPT; on the one hand he recognized that the
mode had no analogue in his exact plate theory, but since the latter was based upon a
restricted set of kinematic assumptions, it could not be assumed necessarily that there was
no counterpart within the exact, and complete, three-dimensional theory. On the other
hand, Levinson expected the w2 mode to conform broadly with those kinematic
assumptions, and therefore considered its existence to be rather dubious, indicating that
an analysis of the type presented here would be necessary to settle the matter: indeed, it
was precisely that observation which, belatedly, prompted the present work. By comparing
MPT predictions with known exact theories, it will be seen that Levinson’s doubts over
the w2 mode are quite justified, the mode displaying almost schizophrenic behaviour, by
providing fair agreement with at least two different modes at various wavelengths. In
contrast, it will be seen that the H mode is in exact agreement with frequency and phase
(and therefore group) velocity predictions for the second slowest SH wave (see reference
[15]) in the infinite plate as long as the shear coefficient takes the value k= p2/12. In
arriving at his conclusion, Levinson appears to have overlooked these SH modes, which
is not surprising since they have received comparatively little attention in the literature,
as compared with the Rayleigh–Lamb modes. Both for completeness, and to partially
remedy this imbalance, an outline derivation of the governing frequency equation is
provided in Appendix 1.

Lastly in this Introduction, it is appropriate to note that there have been numerous
studies on more ‘‘refined’’ shear deformation plate theories (see reference [16] for a brief
review), the objectives of which have included the avoidance of shear coefficient usage, and
the prediction of more realistic distributions of shear stress. An analysis of the structure
of many of these alternative approximate theories has been provided recently by Muller
and Touratier [17], but since these authors caution ‘‘Do not ask any of these
two-dimensional plate theories to give you directly the exact thickness distribution of these
shear-stresses’’, it would appear that avoidance of shear coefficient usage is the main
advantage; however given the accuracy that MPT can achieve for the w1 mode with the
coefficient presented here, this advantage may be more imagined than real. Indeed, since
in many of these theories, a shear coefficient is more or less implied in the choice of
displacement field, it is likely that use of this ‘‘best’’ coefficient is effectively precluded.

2. MINDLIN PLATE THEORY EQUATIONS

For an unloaded simply supported rectangular plate occupying the space

0E xE a, 0E yE b, −h/2E zE h/2, (3)
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undergoing natural oscillation at radian frequency v, the Mindlin plate equations (see
reference [18])
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reduce to the form

K L K La11 − rhv2 a12 a13 AmnG G G G
G G G Ga21 a22 −

rh3

12
v2 a23 Bmn =0, (5)

G G G G
G G G Ga31 a32 a33 −

rh3

12
v2 Cmnk l k l

where

a11 = kGh$0mp

a 1
2

+0np

b 1
2

%, a22 =D$0mp

a 1
2

+
(1− n)

2 0np

b 1
2

%+ kGh,

a33 =D$(1− n)
2 0mp

a 1
2

+0np

b 1
2

%+ kGh, a12 = a21 = kGh0mp

a 1,

a13 = a31 = kGh0np

b 1, a23 = a32 =D
(1+ n)

2 0mp

a 10np

b 1. (6)

In these equations k, G, r and n are the shear coefficient, the shear modulus, the mass
density and the Poisson’s ratio, respectively; D is the plate flexural rigidity, given by

D=Eh3/12(1− n2)=Gh3/6(1− n), (7)

and E is Young’s modulus; it has been assumed that the plate centre line deflection w and
the rotations bx and by are given by

w=Amn sin
mpx

a
sin

npy
b

, bx =Bmn cos
mpx

a
sin

npy
b

, by =Cmn sin
mpx

a
cos

npy
b

,

(8)

where Amn , Bmn , and Cmn are constants pertaining to the mnth case, and the time dependency
exp(ivt) is assumed. It should be noted that the x–y dependency assumed in equations
(8) satisfies the required boundary conditions at the simply supported edges of the plate,
and is also compatible with a standing or travelling wave in a plate of infinite extent.
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Setting the determinant in equation (5) to zero leads to a cubic equation in v2, which
factorizes to give the quadratic in v2 as

rh3v4 −v2(12p2DM2 +12kGh+ p2M2kGh3)+12p4M4DkG/r=0, (9)

together with

v2 = {12kGh+6p2M2D(1− n)}/rh3, (10)

where the notation

M2 = (m/a)2 + (n/b)2 (11)

has been employed.
Application of the quadratic formula to equation (9) leads to frequency predictions for

the w1 and w2 modes, while equation (10) gives the frequency of the H mode.

2.1.          w1 

Upon setting v= 5cp , where 5=2p/l= p/G is the wavenumber, l is wavelength, cp is
the phase velocity, and G is the semi-wavelength, equation (9) may be written in the
non-dimensional form

0cp
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4

−0cp
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2
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2
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p2 +0h
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2
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4
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Note here that M as defined by equation (11) is in fact the inverse of the semi-wavelength
G, and cs =(G/r)1/2 is the shear wave velocity.

One can now note that the terms cp /cs and h/G are, for the long wavelength
approximation, both small quantities, both of whose order of magnitude is denoted by D.
The first order approximation is obtained by omitting terms of order higher than D4, which
effectively means ignoring the first and part of the second term in equation (12) to give
just

0cp

cs1=
p

z6(1− n) 0h
G1, (13)

and this agrees with the phase velocity prediction of classical thin plate theory (TPT).
It is immediately apparent that TPT gives the physically unrealistic prediction
that cp /cs:a as h/G:a, and it was this observation (or rather a parallel observation
for Euler–Bernoulli beam theory) which provided the original motivation for the
introduction of first rotatory inertia and then shear deformation effects, such that the
limiting velocity at short wavelength would be that of, or at least close to, Rayleigh surface
waves.

For the second order approximation, terms of order higher than D6 are omitted, which
is just the first term in equation (12), which gives

0cp
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p

z6(1− n) 0h
G1$1+

p2

12 0h
G1

2

01+
2

k(1− n)1%
−1/2

; (14)
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employing the binomial expansion, and omitting terms of order higher than D3 gives the
second order approximation as

0cp
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p

z6(1− n) 0h
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012+
1
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2.2. –  :    



The exact Rayleigh–Lamb frequency equation for the infinite plate can be written in the
form
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where

k2 =2(1− n)/(1−2n), (17)

and the exponents 21 pertain to symmetric and asymmetric modes respectively; for the
lowest, flexural, mode one requires the latter.

Employing three terms in the ascending series for the tangent functions, cancelling the
factor h/G, and omitting terms of order higher than D4 leads to the first order
approximation

0cp

cs1=
p

z6(1− n) 0h
G1, (18)

which is in agreement with classical thin plate theory. The second order approximation
is obtained by omitting terms of order greater than D6, which leads to the prediction
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Employing the binomial expansion, and now omitting terms higher than D3 gives the
second order approximation as
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One now requires that these two second order approximations, equations (15) and (20),
should be identical which yields the value for the shear coefficient k as

k=5/(6− n). (21)

For completeness, this and previous plate shear coefficients, together with their originators,
are listed below, or shown in Table 1 for those values having a Poisson ratio dependence.
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T 1

Shear coefficients dependent on the Poisson ratio; cR denotes the Rayleigh surface wave
velocity

Poisson ratio, n 0·0 0·25 0·3 0·5

k=(cR /cs )2 0·763932 0·845299 0·860094 0·912622
(Mindlin [1])
k=5/(6− n) 0·833333 0·869565 0·877193 0·909091

(Hutchinson [11],
present author)

Numerically, the differences may not be large but, as will be seen, the effect on phase
velocity prediction can be significant. The listed values are as follows:

k=2/3=0·666667, Uflyand [19]; k=5/6=0·833333, Reissner [20];

k= p2/12=0·822467, Mindlin [2]; k=8/9=0·888889, Timoshenko*.

3. THEORETICAL PREDICTIONS

3.1.    

Exact phase velocity predictions from the Rayleigh–Lamb (R–L) frequency equation are
shown as solid lines in Figure 1, while predictions from Mindlin plate theory (MPT), thin
plate theory (TPT) and various asymptotic or reference velocities are shown using a variety
of characters. First, it is noted that TPT provides perfectly acceptable agreement with the
exact flexural mode for long (non-dimensional) wavelength, that is for h/GQ 0·2; for
shorter wavelengths, the w1 mode of MPT (with k=5/(6− n)), marked with an asterisk,
provides such excellent agreement that no error can be discerned on the diagram. Actual
errors between the two predictions, for various values of the Poisson ratio, will be
considered later in more depth; however, at this point in the discussion it suffices to note
that there is excellent agreement throughout the range considered; note that h/G=2 is
equivalent to a wavelength equal to plate thickness, and the elastic body might more
properly be considered a block rather than a plate. As the wavelength approaches zero
for this mode, so the exact elastodynamic theory predicts that disturbances should
propagate at the Rayleigh surface wave velocity (RSWV), cp /cs =0·9274, for a Poisson’s
ratio of n=0·3. For the particular shear coefficient employed in Figure 1, k=5/(6− n),
the difference in prediction between exact and MPT is 0·989%, as the semi-wavelength G

approaches zero; this error could be brought to zero by choosing a shear coefficient such
that agreement between MPT and RSWV, as G approaches zero, is enforced. This is the
approach first adopted by Mindlin [1], and requires use of the coefficient k=0·860094 for
n=0·3, as in Table 1; however, as will be seen, this value of the shear coefficient provides
less good agreement over the longer wavelength range, although it is better than the
coefficient k= p2/12, which Mindlin employed in his second paper [2]. Moreover, if one
is interested only in the limiting case of the velocity as the wavelength approaches zero,
there is little point in not using the well known RSWV prediction but rather relying on
MPT to predict this limiting behaviour, especially as one could hardly expect the assumed
displacement field of MPT to approximate that of a Rayleigh surface wave; the present
author is therefore of the opinion that this approach to choosing the best shear coefficient
serves little or no purpose.

* This value has a long but rather obscure history, considered in some detail in Appendix 2.
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The slowest symmetric branch (that is, employing the exponent +1 in equation (16))
is that of the thickness-shear mode, denoted by TS in Figure 1, and has cp /cs =1 for all
wavelengths. The second slowest symmetric (longitudinal) prediction from R–L theory,
denoted by an L on Figure 1, has non-dimensional phase velocity cp /cs =1·6903 at zero
wavelength, which is equivalent to the bar velocity, (E/r)1/2, but with the value of Young’s
modulus E replaced by E/(1− n2), as is consistent with a plane strain condition. As with
the lowest asymmetric mode (the flexural mode), the short wavelength limiting velocity is
RSWV. Also shown, for reference purposes, are the velocity of waves of dilatation for the
infinite region, which has cp /cs =(2(1− n)/(1−2n))1/2 = (3·5)1/2 1 1·8708, for a Poisson’s
ratio of n=0·3, and that of RSWV which has cp /cs =0.9274; both of these are shown as
dotted lines in Figure 1. Higher exact branches from R–L theory occur in ‘‘pairs’’, and
are denoted by an S or an A according to whether they are symmetric or asymmetric.

Now consider the w2 mode of MPT, marked by a cross in Figure 1. At long wavelength,
h/GE 0·5, there is reasonable agreement with an asymmetric mode of R–L, while at
shorter wavelength, h/Ge 0·9, there is better agreement with a higher R–L symmetric
mode. In the limit h/G:a, the w2 mode has cp /cs =1·6903, whereas the above and higher
R–L mode velocities approach the velocity of waves of distortion, cs . Thus it would appear
that the w2 prediction cannot be associated with a single mode from exact elastodynamic
theory throughout the wavelength range; indeed in the wavelength range in Figure 1 it is
close to, or crosses four exact R–L or SH modes at various wavelengths, and as h/G:a,
so the mode will provide exact agreement with an infinite number of exact modes at discrete
values of h/G; that is, where the w2 mode crosses the exact R–L modes, as the latter
approach cs . In view of this schizophrenic nature of the phase velocity predictions of this
mode, they should be disregarded.

At first sight, the H mode (calculated with the shear coefficient k= p2/12), denoted by
H in Figure 1, is likewise close to the second slowest asymmetric R–L mode at long
wavelength, before showing good agreement with the lowest symmetric (longitudinal)

Figure 1. A dispersion diagram for Rayleigh–Lamb, Mindlin, SH and classical thin plate theories:
non-dimensional phase velocity (cp /cs ) versus plate thickness/semi-wavelength (h/G). The Poisson’s ratio n=0·3.
Exact R–L predictions are shown as solid lines; *, w1 mode; w, SH modes; +, w2 mode. RSWV, and the velocity
of waves of dilatation in the infinite medium, are shown as dotted lines, as is the prediction of classical plate
theory, also marked with the letter C. F, TS, L, H, A and S label flexural, thickness shear, longitudinal, H mode,
asymmetric and symmetric modes, respectively.
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Figure 2. The percentage error in the w1 mode for various shear coefficients; Poisson ratio n=0·3.

mode for 0·8e h/Ge 1·2, and it is tempting also to dismiss the Mindlin prediction on the
basis of its schizophrenic behaviour. In fact, this mode is just one of a family of exact SH
modes, all of which are marked by a circle in Figure 1; the common feature of this SH
mode is that the transverse displacement, w, is zero, and its derivation and equivalence
to the Mindlin H mode is demonstrated in Appendix 1. All of these modes have velocities
approaching cs as wavelength approaches zero.

3.2.   , w1,     

As has been remarked above, there is no discernible difference between the w1 mode of
MPT and the flexural branch of R–L theory on the dispersion diagram, Figure 1; in this
section, percentage errors between the two are considered for a variety of shear coefficients,
for two values of the Poisson ratio. In Figure 2 is shown the percentage error for a
Poisson’s ratio n=0·3; it is immediately evident that the value k=5/(6− n) provides best

Figure 3. A ‘‘close up’’ of Figure 2.
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Figure 4. The percentage error in the w1 mode for various shear coefficients; Poisson ratio n=0·25.

agreement over the wavelength range considered, with the one surprising exception of the
value k=8/9. For h/G=2, when the wavelength is equal to the plate depth, the popular
value of k= p2/12 gives an error in excess of −3%, while the value k=2/3 gives an error
approaching −12%. The value k=5/(6− n) gives an error of approximately −0·5% and,
as has been seen above, there is an error of less than +1% as h/G:a. The surprising
result is the case of k=8/9, where the maximum error over the wavelength range of
Figure 2 is approximately 0·14%, and the error is just 0·064% as h/G=2, as can be seen
in Figure 3 which is a ‘‘close-up’’ of Figure 2; as h/G:a, the error is +1·66%, which
is slightly worse than the prediction with k=5/(6− n). This value, however, suffers from
being independent of the Poisson’s ratio, and this better agreement should be regarded as
fortuitous. Thus in Figures 4 and 5, which show errors for Poisson’s ratio n=0·25, the
general error trends are similar, but best agreement is now given by the value k=5/(6− n),
with maximum error smaller than −0·5%, while the value k=8/9 gives an error in excess

Figure 5. A ‘‘close up’’ of Figure 4.
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Figure 6. The percentage error in the w1 mode for k=5/(6− n) over the wavelength range 0E h/GE 20;
Poisson’s ratio n=0·3.

of +0·5%, for h/G=2. For completeness, the w1 mode error employing the coefficient
k=5/(6− n), with n=0·3, is shown in Figure 6 over the wavelength range 0E h/GE 20,
and indicates the transition from slight underestimate at long wavelength to slight
overestimate at short wavelength; these results are in complete qualitative agreement with
those of Hutchinson [11], who found that a coefficient slightly in excess of k=5/(6− n)
at long wavelength, and slightly smaller at short wavelength, would provide exact
agreement between MPT and his ‘‘exact’’ elasticity solution [12].

4. CONCLUSIONS

By matching long wavelength phase velocity predictions between the w1 mode of Mindlin
plate theory and the exact Rayleigh–Lamb frequency equation for flexural waves, a best
shear coefficient of k=5/(6− n) is found; when employing this value, the Mindlin w1 mode
has less than −0·5% error in phase velocity prediction, when the wavelength approaches
the plate thickness, and maximum 1% error as wavelength approaches zero. The Mindlin
H mode, previously dismissed by Levinson, provides exact agreement with the second
slowest of a family of SH waves for the infinite plate, as long as the shear coefficient takes
the value k= p2/12. The Mindlin w2 mode, however, cannot be reconciled with any known
single exact elastodynamic mode, and should therefore be disregarded.
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APPENDIX 1: SH WAVES IN THE INFINITE PLATE

The starting point is the displacement equations of motion

G
1−2n

1e
1x

+G92u= r
12u
1t2 ,

G
1−2n

1e
1y

+G92v= r
12v
1t2,

G
1−2n

1e
1z

+G92w= r
12w
1t2 ,

(A1a–c)

where e is the dilatation, given by

e= 1u/1x+ 1v/1y+ 1w/1z; (A2)
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the assumption w=0 in equation (A1c) leads to the condition

(1/1z)(1u/1x+ 1v/1y)=0. (A3)

Since the stress sz is zero on the boundary, it will be seen that this condition implies that
this stress is zero throughout the plate.

Writing

u(x, y, z, t)=U(z) exp0impx
a

+
inpy
b

+ivt1,

v(x, y, z, t)=V(z) exp0impx
a

+
inpy
b

+ivt1, (A4)

in equations (A1a,b) leads to the two coupled ordinary differential equations

d2U(z)
dz2 +0rv2

G
−0mp

a 1
2

−0np

b 1
2

−
1

1−2n 0mp

a 1
2

1U(z)−
1

1−2n 0mp

a 10np

b 1V(z)=0,

(A5a)

d2V(z)
dz2 +0rv2

G
−0mp

a 1
2

−0np

b 1
2

−
1

1−2n 0np

b 1
2

1V(z)−
1

1−2n 0mp

a 10np

b 1U(z)=0.

(A5b)

Setting

U(z)=U� exp(lz), V(z)=V� exp(lz) (A6)

leads to a characteristic equation which factorizes as

(l2
1 − (p/G)2 + (v/cs )2)(l2

2 − (pk/G)2 + (v/cs )2)=0. (A7)

Under the assumption that l1 and l2 are both positive, one has

U(z)=U1 cosh l1z+U2 sinh l1z+U3 cosh l2z+U4 sinh l2z,

V(z)=V1 cosh l1z+V2 sinh l1z+V3 cosh l2z+V4 sinh l2z. (A8)

However, the eight constants in equations (A8) cannot be independent, and back
substitution into either of equations (A5) leads to the relationships

m
a

U1 +
n
b

V1 =0,
m
a

U2 +
n
b

V2 =0,
m
a

V3 −
n
b

U3 =0,
m
a

V4 −
n
b

U4 =0. (A9)

One now considers the side-condition for w=0, equation (A3). Substituting from (A8)
leads to the requirement, valid throughout the thickness,

l2(b/n)M2(V3 sinh l2z+V4 cosh l2z)=0. (A10)

This condition requires either l2 =0—in which case U(z) and V(z) are independent of
constants U4 and V4, and U3 and V3 are rigid body displacements, and therefore
irrelevant—or V3 =V4 =0, which in turn requires U3 =U4 =0. In either case, these
constants are zero, and the functions U(z) and V(z) become

U(z)=U1 cosh l1z+U2 sinh l1z, V(z)=−(bm/na)U(z). (A11)
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The traction-free boundary conditions on the upper and lower surfaces of the plate, that
is

sz = txz = tyz =0 on z=2h/2, (A12)

become, respectively,

(m/a)U(z)+ (n/b)V(z)=0, dU(z)/dz=0, dV(z)/dz=0. (A13a–c)

The boundary condition (A13a) is satisfied identically, while the two others both reduce
to

$ sinh (l1h/2)
−sinh (l1h/2)

cosh (l1h/2)
cosh (l1h/2)%$U1

U2%=0, (A14)

and setting the determinant equal to zero gives the frequency equation

sinh l1h=0. (A15)

If l1 is real, then the only root is l1h=0, which is a special case of l1 being imaginary,
whereupon the frequency equation may be written as

sinX0vh
cs 1

2

−0ph
G 1

2

=0, 0vh
cs 1

2

−0ph
G 1

2

= n2p2, n=0,1,2, . . . , (A16)

or

v2 = (Gn2p2h+Gp2M2h3)/rh3, (A17)

where M has replaced G−1.
For n=0, the frequency is that of simple thickness-shear, with phase velocity equal to

cs ; for n=1, the frequency is identical to the Mindlin H mode prediction, equation (10),
provided that the shear coefficient in the latter takes the value k= p2/12. The phase velocity
for this mode reduces to the simple form

(cp /cs)2 =1+ n2(h/G)−2, (A18)

Finally in this Appendix, it should be noted that Srinivas et al. [21] briefly mentioned this
mode as part of a larger study of vibration in thick plates of rectangular planform,
performing an analysis similar in nature to that of Hutchinson [12], and likewise concluded
that the H mode frequency prediction was exact as long as one employes the coefficient
k= p2/12. On the other hand, those authors concluded that the Mindlin w2 mode
eigenvalues were only slightly greater than those of an exact asymmetric mode, and was
therefore valid for frequency (or phase velocity) prediction; the present work suggests
otherwise.

APPENDIX 2

Mindlin [1] attributed both the values k=2/3 and 8/9 to Timoshenko, the latter value
having rather an interesting history. It was employed by Timoshenko in 1922 [22] in a
paper which compares the long wavelength prediction of Timoshenko beam theory (TBT)
with exact elasticity solutions for both the bar of circular cross-section, and the
Rayleigh–Lamb plate equation for a ‘‘wide’’, that is plane strain, beam of rectangular
cross-section. Timoshenko in turn attributed this value to an experimental (photoelastic)
study by Filon, referring the reader to an article on the effect of surface loading of beams
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in Love’s treatise [23], and in particular the departure from the Euler–Bernoulli
relationship of proportionality between bending moment and curvature through the
so-called ‘‘additional deflection due to shear’’. Love refers the reader to a theoretical study
by Filon [24], which has in turn been verified experimentally by Filon [25].

According to Filon’s theoretical study, the central deflection d of a simply supported
beam of length L, depth d, and having flexural rigidity EI, loaded by a concentrated load
W at midspan, can be written as

d=
WL3

48EI 01+
3
20

(16+10n)
d2

L21. (B1)

The first term is the usual ‘‘strength of materials’’ deflection, while the second gives the
additional deflection due to shear. Timoshenko quotes the correcting factor in his text [26]
as

01+2·85
d2

L21, (B2)

implying a choice of Poisson’s ratio as n=0·3, while Love has the same correcting factor
as

01+
45
16

d2

L21, (B3)

which implies n=11/40, this being an acceptable value for the glass employed in Filon’s
experimental study. A shear coefficient of k=8/9 can be arrived at by equating the
‘‘strength of materials’’ estimate of the correcting factor, which is

01+
E
kG

d2

L21, (B4)

with the factor quoted by Love, expression (B3), and setting the Poisson’s ratio n=0·25
(rather than 11/40): this would appear to be the procedure adopted by Timoshenko in
reference [22]. If this inconsistency of two different values of the Poisson’s ratio is removed,
by equating factors (B1) and (B4), then the resulting coefficient is

k=
20(1+ n)
24+15n

, (B5)

which is equal to 8/9 for n=0·2.
However, it should be noted that the above calculations pertain to a thin, that is plane

stress, rectangular cross-section: the ‘‘true’’ plate coefficient from this approach is obtained
by replacing the Poisson’s ratio n in equation (B5) by n/(1− n), to give

k=
20

24−9n
. (B6)

Phase velocity predictions for the w1 mode when using this value of the coefficient are not
shown in Figures 2–5; however, the error characteristic is similar to that when using the
value k=5/6, except that it is positive rather than negative.


